Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1370685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572355

RESUMO

The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-ß-1,4-GlcNAc-ß-1,3-Gal-ß-1,3-GlcNAc-, containing the human glycoform Gal-ß-1,4-GlcNAc-ß-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal α-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (α-2,3/α-2,6/α-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.

2.
World J Gastroenterol ; 30(10): 1431-1449, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596485

RESUMO

BACKGROUND: Serotonin receptor 2B (5-HT2B receptor) plays a critical role in many chronic pain conditions. The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea (IBS-D) was investigated in the present study. AIM: To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D. METHODS: Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls. The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores. The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint. Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1 (TRPV1) expression were examined following 5-HT2B receptor antagonist administration. Changes in visceral sensitivity after administration of the TRPV1 antagonist were recorded. RESULTS: Here, we observed greater expression of the 5-HT2B receptor in the colonic mucosa of patients with IBS-D than in that of controls, which was correlated with abdominal pain scores. Intracolonic instillation of acetic acid and wrap restraint induced obvious chronic visceral hypersensitivity and increased fecal weight and fecal water content. Exogenous 5-HT2B receptor agonist administration increased visceral hypersensitivity, which was alleviated by successive administration of a TRPV1 antagonist. IBS-D rats receiving the 5-HT2B receptor antagonist exhibited inhibited visceral hyperalgesia.Moreover, the percentage of 5-HT2B receptor-immunoreactive (IR) cells surrounded by TRPV1-positive cells (5-HT2B receptor I+) and total 5-HT2B receptor IR cells (5-HT2B receptor IT) in IBS-D rats was significantly reduced by the administration of a 5-HT2B receptor antagonist. CONCLUSION: Our finding that increased expression of the 5-HT2B receptor contributes to visceral hyperalgesia by inducing TRPV1 expression in IBS-D patients provides important insights into the potential mechanisms underlying IBS-D-associated visceral hyperalgesia.


Assuntos
Síndrome do Intestino Irritável , Humanos , Ratos , Animais , Síndrome do Intestino Irritável/patologia , Receptor 5-HT2B de Serotonina , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Serotonina/metabolismo , Diarreia/etiologia , Receptores de Serotonina , Dor Abdominal/etiologia , Dor Abdominal/metabolismo , Acetatos
4.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562800

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism12. For example, PDAC utilizes and is dependent on high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the challenge of identifying and characterizing favorable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase integral to lysosomal functioning7, as a novel and targetable vulnerability in PDAC. In human patient and murine PDAC samples, we discovered that PIKFYVE is overexpressed in PDAC cells compared to adjacent normal cells. Employing a genetically engineered mouse model, we established the essential role of PIKfyve in PDAC progression. Further, through comprehensive metabolic analyses, we found that PIKfyve inhibition obligated PDAC to upregulate de novo lipid synthesis, a relationship previously undescribed. PIKfyve inhibition triggered a distinct lipogenic gene expression and metabolic program, creating a dependency on de novo lipid metabolism pathways, by upregulating genes such as FASN and ACACA. In PDAC, the KRAS-MAPK signaling pathway is a primary driver of de novo lipid synthesis, specifically enhancing FASN and ACACA levels. Accordingly, the simultaneous targeting of PIKfyve and KRAS-MAPK resulted in the elimination of tumor burden in a syngeneic orthotopic model and tumor regression in a xenograft model of PDAC. Taken together, these studies suggest that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38587778

RESUMO

The substantial amount of mercury emissions from coal-fired flue gas causes severe environmental contamination. With the Minamata Convention now officially in force, it is critical to strengthen mercury pollution control. Existing activated carbon injection technologies suffer from poor desulfurization performance and risk secondary-release risks. Therefore, considering the potential industrial application of adsorbents, we selected cost-effective and readily available activated coke (AC) as the carrier in this study. Four metal selenides-copper, iron, manganese, and tin-were loaded onto the AC to overcome the application problems of existing technologies. After 120 min of adsorption, the CuSe/AC exhibited the highest efficiency in removing Hg0, surpassing 80% according to the experimental findings. In addition, the optimal adsorption temperature window was 30-120 °C, the maximum adsorption rate was 2.9 × 10-2 mg·g-1·h-1, and the effectiveness of CuSe/AC in capturing Hg0 only dropped by 5.2% in the sulfur-containing atmosphere. The physicochemical characterization results indicated that the AC surface had a uniform loading of CuSe with a nanosheet structure resembling polygon and that the Cu-to-Se atomic ratio was close to 1:1. Finally, two possible Hg0 reaction pathways on CuSe/AC were proposed. Moreover, it was elucidated that the highly selective binding of Hg0 with ligand-unsaturated Se- was the key factor in achieving high adsorption efficiency and sulfur resistance in the selenium-functionalized AC adsorbent. This finding offers substantial theoretical support for the industrial application of this adsorbent.

6.
Opt Express ; 32(7): 12438-12448, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571066

RESUMO

Ultraviolet B light-emitting diodes (UVB LEDs) hold promise in medical and agricultural applications. The commonly used sapphire substrate for their epitaxy growth possesses a high refractive index and excellent UV light absorption characteristics. However, this high refractive index can induce total internal reflection (TIR) within the substrate, leading to decreased Light Extraction Efficiency (LEE) due to light absorption within the material. In this study, UVB LED chips were detached from the sub-mount substrate and directly affixed onto an aluminum nitride (AlN) substrate with superior heat dissipation using a eutectic process. This was undertaken to diminish packaged thermal resistance (PTR). Simultaneously, optimization of the UVB LED packaging structure was employed to alleviate LEE losses caused by the TIR phenomenon, with the overarching goal of enhancin external quantum efficiency (EQE). The final experimental findings suggest that optimal LEE is achieved with packaging dimensions, including a length (ELL) of 2 mm, a width (ELW) of 1.62 mm, and a height (ELH) of 0.52 mm. At an input current of 200 mA, the output power reaches 50 mW, resulting in an EQE of 6.3%. Furthermore, the packaged thermal resistance from the chip to the substrate surface can be reduced to 4.615 K/W.

7.
Opt Express ; 32(6): 9287-9296, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571166

RESUMO

The light distribution of light-emitting diodes (LEDs) generally resembles that of a Lambertian light source. When used as large-area light sources, the light distribution angle of LEDs must be modified through secondary optics design to achieve uniformity and minimize the number of light sources. However, secondary optical components pose several challenges such as demanding alignment accuracy, material aging, detachment, and lower reliability. Therefore, this paper proposes a primary optical design approach to achieve full-angle emission in LEDs without the need for lenses. The design employs a flip-chip as the light source and incorporates a V-shaped packaged structure, including a white wall layer, optical structure layers, and a V-shaped diffuse structure. With this design, the LEDs achieve full-angle emission without relying on lenses. Our experimental results demonstrated a peak intensity angle of 77.7°, a 20.3% decrease in the intensity of the central point ratio, and a full width at half maximum (FWHM) of the light distribution of 175.5°. This design is particularly suitable for thin, large-area, and flexible backlight light sources. Moreover, the absence of secondary optical components allows for a thinner light source module.

8.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582591

RESUMO

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Assuntos
Ecdisteroides , Inseticidas , Pirazóis , ortoaminobenzoatos , Animais , Spodoptera , Metabolismo dos Lipídeos , Larva , Inseticidas/toxicidade , Carboidratos
9.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586029

RESUMO

Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which was exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition. In vivo experiments using a novel, orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.

10.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
11.
PLoS Pathog ; 20(4): e1012138, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640110

RESUMO

Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitates correct development and identifies pcamiR1 as a promising target for disease control.

12.
J Colloid Interface Sci ; 667: 91-100, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621335

RESUMO

The development of efficient and multifunctional sonosensitizers is crucial for enhancing the efficacy of sonodynamic therapy (SDT). Herein, we have successfully constructed a CoOx-loaded amorphous metal-organic framework (MOF) UIO-66 (A-UIO-66-CoOx) sonosensitizer with excellent catalase (CAT)- and glutathione-oxidase (GSH-OXD)-like activities. The A-UIO-66-CoOx exhibits a 2.6-fold increase in singlet oxygen (1O2) generation under ultrasound (US) exposure compared to crystalline UIO-66 sonosensitizer, which is attributed to its superior charge transfer efficiency and consistent oxygen (O2) supply. Additionally, the A-UIO-66-CoOx composite reduces the expression of glutathione peroxidase (GPX4) by depleting glutathione (GSH) through Co3+ and Co2+ valence changes. The high levels of highly cytotoxic 1O2 and deactivation of GPX4 can lead to lethal lipid peroxidation, resulting in concurrent apoptosis and ferroptosis. Both in vitro and vivo tumor models comprehensively confirmed the enhanced SDT antitumor effect using A-UIO-66-CoOx sonosensitizer. Overall, this study emphasizes the possibility of utilizing amorphization engineering to improve the effectiveness of MOFs-based sonosensitizers for combined cancer therapies.

13.
Small ; : e2310064, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607265

RESUMO

Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm-2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm-2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.

15.
Nanomicro Lett ; 16(1): 179, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656460

RESUMO

Silicon (Si) has emerged as a potent anode material for lithium-ion batteries (LIBs), but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation, leading to material pulverization and capacity degradation. Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance, yet still grapples with issues like pulverization, unstable solid electrolyte interface (SEI) growth, and interparticle resistance. This review delves into innovative strategies for optimizing Si anodes' electrochemical performance via structural engineering, focusing on the synthesis of Si/C composites, engineering multidimensional nanostructures, and applying non-carbonaceous coatings. Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li+ transport, thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency. We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss. Our review uniquely provides a detailed examination of these strategies in real-world applications, moving beyond theoretical discussions. It offers a critical analysis of these approaches in terms of performance enhancement, scalability, and commercial feasibility. In conclusion, this review presents a comprehensive view and a forward-looking perspective on designing robust, high-performance Si-based anodes the next generation of LIBs.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38658228

RESUMO

BACKGROUND AND AIMS: This study aimed to assess the associations between serum iron concentration, C-reactive protein (CRP) concentration and the risk of all-cause mortality and cardiovascular mortality in the general population and to explore potential mediating and moderating effects. METHODS AND RESULTS: This study analyzed data from the National Health and Nutrition Examination Survey spanning the years 1999-2010, encompassing 23,634 participants. Cox proportional hazards regression models were employed to investigate the independent associations of serum iron and CRP with all-cause and cardiovascular mortality. Moderation and mediation analyses explored the moderating effect of CRP on the association between the serum iron concentration and all-cause and cardiovascular mortality, and the mediating role of the serum iron concentration in the association between the CRP concentration and all-cause and cardiovascular mortality. After multivariate adjustments in the Cox model, serum iron and CRP levels were independently correlated with both all-cause and cardiovascular mortality risk. Moderation analyses revealed a more pronounced correlation between the serum iron concentration and both all-cause and cardiovascular mortality in participants with higher CRP levels. Mediation analysis indicated that the serum iron concentration partly mediated the impact of CRP on the risk of all-cause mortality (13.79%) and cardiovascular mortality (24.12%). CONCLUSION: Serum iron and CRP are independently associated with all-cause and cardiovascular mortality. Moreover, the associations between serum iron concentrations and both all-cause and cardiovascular mortality are more pronounced in individuals with elevated CRP. Serum iron partially mediates the effect of CRP on all-cause and cardiovascular mortality.

17.
Front Microbiol ; 15: 1361180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650881

RESUMO

Rapid and accurate identification of lactic acid bacteria (LAB) species would greatly improve the screening rate for functional LAB. Although many conventional and molecular methods have proven efficient and reliable, LAB identification using these methods has generally been slow and tedious. Single-cell Raman spectroscopy (SCRS) provides the phenotypic profile of a single cell and can be performed by Raman spectroscopy (which directly detects vibrations of chemical bonds through inelastic scattering by a laser light) using an individual live cell. Recently, owing to its affordability, non-invasiveness, and label-free features, the Ramanome has emerged as a potential technique for fast bacterial detection. Here, we established a reference Ramanome database consisting of SCRS data from 1,650 cells from nine LAB species/subspecies and conducted further analysis using machine learning approaches, which have high efficiency and accuracy. We chose the ensemble meta-classifier (EMC), which is suitable for solving multi-classification problems, to perform in-depth mining and analysis of the Ramanome data. To optimize the accuracy and efficiency of the machine learning algorithm, we compared nine classifiers: LDA, SVM, RF, XGBoost, KNN, PLS-DA, CNN, LSTM, and EMC. EMC achieved the highest average prediction accuracy of 97.3% for recognizing LAB at the species/subspecies level. In summary, Ramanomes, with the integration of EMC, have promising potential for fast LAB species/subspecies identification in laboratories and may thus be further developed and sharpened for the direct identification and prediction of LAB species from fermented food.

18.
J Am Chem Soc ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648558

RESUMO

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

19.
J Chem Theory Comput ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626287

RESUMO

We present an efficient analytical energy gradient algorithm for the cluster-in-molecule resolution-of-identity second-order Møller-Plesset perturbation (CIM-RI-MP2) method based on the Lagrange multiplier method. Our algorithm independently constructs the Lagrangian formalism within each cluster, avoiding the solution of the coupled-perturbed Hartree-Fock (CPHF) equation for the whole system. Due to this feature, the computational cost of the CIM-RI-MP2 gradients is much lower than that of other local MP2 algorithms. Benchmark calculations of several molecules containing up to 312 atoms demonstrate the general applicability of our CIM-RI-MP2 gradient algorithm. The optimized structure of a 244-atom molecule using the CIM-RI-MP2 method with the cc-pVDZ basis set is in good agreement with the corresponding crystal structure. A single-point gradient calculation conducted for a molecular cage containing 972 atoms and 9612 basis functions takes 48 h on 25 nodes, utilizing a total of 600 CPU cores. The present CIM-RI-MP2 gradient program is applicable for obtaining the optimized geometries of large systems with hundreds of atoms.

20.
Biomed Pharmacother ; 174: 116583, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626520

RESUMO

BACKGROUND: Primary membranous nephropathy (PMN) is an autoimmune glomerular disease. IL-6 is a potential therapeutic target for PMN. Previous clinical studies have demonstrated the effectiveness of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in treating membranous nephropathy. However, the mechanism of action of MFSD remains unclear. METHODS: Serum IL-6 levels were measured in patients with PMN and healthy subjects. The passive Heymann nephritis (PHN) rat model was established, and high and low doses of MFSD were used for intervention to observe the repair effect of MFSD on renal pathological changes and podocyte injury. RNA-seq was used to screen the possible targets of MFSD, and the effect of MFSD targeting IL-6/STAT3 was further verified by combining the experimental results. Finally, the efficacy of tocilizumab in PHN rats was observed. RESULTS: Serum IL-6 levels were significantly higher in PMN patients than in healthy subjects. These levels significantly decreased in patients in remission after MFSD treatment. MFSD treatment improved laboratory indicators in PHN rats, as well as glomerular filtration barrier damage and podocyte marker protein expression. Renal transcriptome changes showed that MFSD-targeted differential genes were enriched in JAK/STAT and cytokine-related pathways. MFSD inhibits the IL6/STAT3 pathway in podocytes. Additionally, MFSD significantly reduced serum levels of IL-6 and other cytokines in PHN rats. However, treatment of PHN with tocilizumab did not achieve the expected effect. CONCLUSION: The IL-6/STAT3 signaling pathway is activated in podocytes of experimental membranous nephropathy. MFSD alleviates podocyte damage by inhibiting the IL-6/STAT3 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...